翻訳と辞書
Words near each other
・ Magic number (oil)
・ Magic number (physics)
・ Magic number (programming)
・ Magic number (sports)
・ Magic Numbers (game show)
・ Magic of Christmas (Marie Osmond album)
・ Magic of Dungeons & Dragons
・ Magic of Eberron
・ Magic of Faerûn
・ Magic of Incarnum
・ Magic of Life
・ Magic of Love
・ Magic of Love (album)
・ Magic of Love (Perfume song)
・ Magic Hat Brewing Company
Magic hexagon
・ Magic Holidays
・ Magic Hollow
・ Magic Hollow (album)
・ Magic Hotel
・ Magic Hour
・ Magic Hour (2011 film)
・ Magic Hour (band)
・ Magic Hour (Cast album)
・ Magic Hour (Scissor Sisters album)
・ Magic Hour (song)
・ Magic Hunter
・ Magic hyperbeam
・ Magic hypercube
・ Magic in Anglo-Saxon England


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Magic hexagon : ウィキペディア英語版
Magic hexagon
A magic hexagon of order ''n'' is an arrangement of numbers in a centered hexagonal pattern with ''n'' cells on each edge, in such a way that the numbers in each row, in all three directions, sum to the same magic constant ''M''. A normal magic hexagon contains the consecutive integers from 1 to 3''n''2 − 3''n'' + 1. It turns out that normal magic hexagons exist only for ''n'' = 1 (which is trivial) and ''n'' = 3. Moreover, the solution of order 3 is essentially unique.〔Trigg, C. W. ("A Unique Magic Hexagon" ), ''Recreational Mathematics Magazine'', January–February 1964. Retrieved on 2009-12-16.〕 Meng also gave a less intricate constructive proof.〔"Research into the Order 3 Magic Hexagon" ), ''Shing-Tung Yau Awards'', October 2008. Retrieved on 2009-12-16.〕
The order-3 magic hexagon has been published many times as a 'new' discovery. An early reference, and possibly the first discoverer, is Ernst von Haselberg (1887).
==Proof that there are no normal magic hexagons except those of order 1 and 3==
The numbers in the hexagon are consecutive, and run from 1 to (3n^2-3n+1). Hence their sum is a triangular number, namely
:s=}
There are ''r'' = (2''n'' − 1) rows running along any given direction (E-W, NE-SW, or NW-SE). Each of these rows sum up to the same number ''M''. Therefore:
:M=}
This can be rewritten as
: M = \left(\frac - \frac + \frac - \frac\right) + \frac
Multiplying throughout by 32 gives
:32M=72n^3-108n^2+90n-27+
which shows that \frac must be an integer, hence 2n-1 must be a factor of 5, namely 2n-1 = 1 or 2n-1 = 5. The only n\ge 1 that meet this condition are n=1 and n=3. QED.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Magic hexagon」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.